

Clean Water Act (CWA) •40th Anniversary of the Clean Water Act (Oct 1972) from Federal Water Pollution Control Act (1948), to –"restore & maintain the chemical, physical, & biological integrity of the Nation's waters" • interim goals for waters to be fishable & swimmable • All national water discharges are unlawful unless authorized by a permit with baseline, across-the-board technology-based controls for municipalities & industry

Missing elements: Household discharges to the environment One-water systems approach/narrative

Bullitt Center, Seattle \$30m, office O₃-rainwater, PV power & foam-flush dry composting toilets (opens April 22, 2013) Sian Kennedy, New York Times

Social

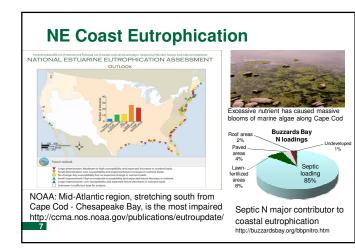
Economic

There are many disconnects in the management of water

e.g. Energy & water use & who pays; most decisions are local; hard to adapt big systems

- Missing a whole-of-system consideration
- ◆ For future technology options it is all about resource recovery (energy, nutrients, H₂O)

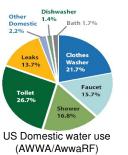
Core elements: water service sustainability

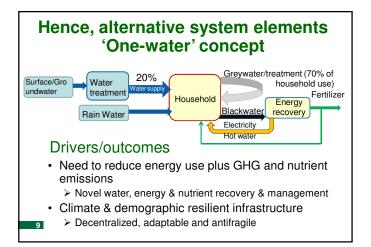

- We can not management the environment*, hence
- -The need for adaptive-resilient water systems
- Ecosystem services are central societal needs
- Therefore, based on 'urban metabolism' to mimic that of nature, water services need to be framed around

-Resource recovery for public health protection

*Social-ecological systems are so complex that understanding them is still a faint hope; If you cannot understand something, "managing" it is problematic & precautionary principle of little value

Bromley (2012) Ecology & Society 17(3): 43-50


National Biol 23.2 Poor Fair Good	55.3%	U.S. EPA 2013 Rivers and Str Assessment 2 water.epa.gov/type/rsl/mo 55% do not support ho N, P & poor habitat m	eams 008-2009 nitoring/riverssurvey ealthy life
 Biological Indicators Benthic macroinvertebrates Periphyton (algae) Fish community 	Chemical Indicators Phosphorus Nitrogen Salinity Acidity 	Physical Indicators Streambed sediments In-stream fish habitat Riparian vegetative cover Riparian disturbance 	 Human Health Indicators Enterococci (fecal indicator) Mercury in fish tissue
	RES Major Regions Eastern Highlands Plains and Lowlands West	8.4% 0.7%	590 750 1.000



of view we need to reuse water and only treat so reuse water is -Fit-for-purpose

8

Primary concern is public health CDC estimate waterborne disease costs > \$970 m/y -Addressing giardiasis, cryptosporidiosis, Legionnaires' disease, otitis externa, and non-tuberculous mycobacterial infections, causing over 40 000 hospitalizations per year, + >\$780 m/y from gastrointestinal pathogens (incl. some via water) Total cost Diseas \$ / hospitalization Cryptosporidiosis \$16 797 \$45 770 572 \$9 607 \$34 401 449 Giardiasis Legionnaires' disease \$33 366 \$433 752 020 NTM infection/Pulmonary \$25 985 / \$25 409 \$425 788 469/ \$194 597 422

Collier et al. (2012) Epidemiology & Infection 140:2003-2013

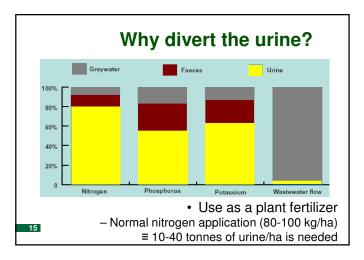
CWA narrative problems, how to make 208 planning better

- In the one-water paradigm
- -we aspire to have no 'waste'
- -trial, adapt, innovate via civic engagement
- Economics: we do not price nor assess in planning: -Recovery of resources – co-located for reuse
 - -Household water service financing, and how to integrate with centralized plans
- -Value of ecosystem services

11

Example solutions to allow

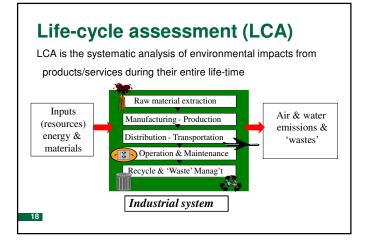
- Central financing entity that owns and maintains decentralized water services / with users' tax breaks
- Owners have options for type of service, which may include:
 - -Urine storage &/or septic retro and pump-out fertilizer payment
 - $-\mbox{Greywater}$ treatment on-site using PV power for use in garden, toilets, clothes washing
 - -Blackwater sewer connection with community useable hotwater heating and/or energy credits
- Municipally-owned reactive barriers for enhanced denitrification for groundwater N removal & phosphorus sorption

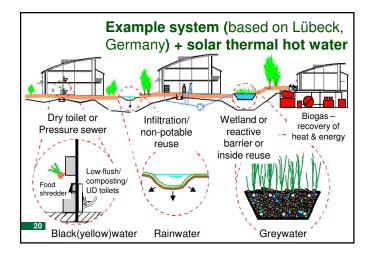

12

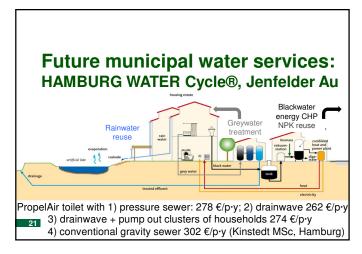
Building codes and responsibilities

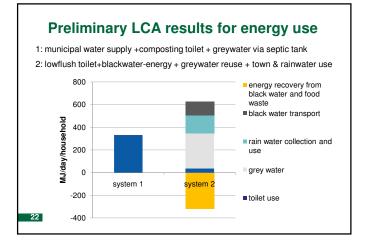
- Reuse of rainwater & greywater not allowed
- Hence need demonstration ordinances
 - -Missing experience, training & validation:
 - Iconic demonstration sites (local experience) could provide that, along with 'green plumber' training, but no yet mandated
 - Adaptive practice requires more flexibility
 —While protecting humans & ecosystems

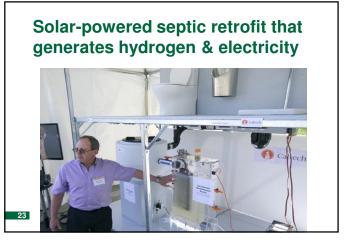
13

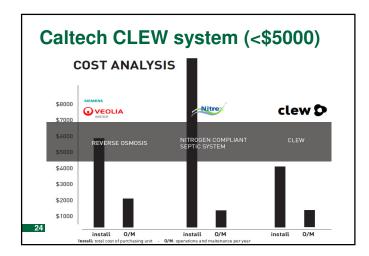


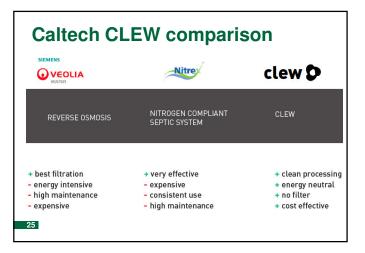


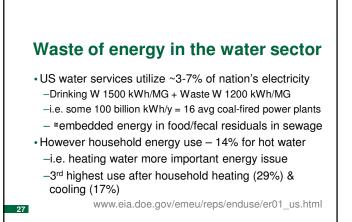

Engineering principles


- •Use of specific process-oriented tools (e.g. LCA, NPV, MRA) to aid in sustainability assessments, and
- •Water-fit-for-purpose/resourcerecovery decision support systems to aid stakeholder involvement




Unit processes	Data sources	
Water services including water extraction, treatment and supply	water utility datasets, peer reviewed articles, ecoinvent database	
Composting toilet, low-flush toilet, urine diversion toilet	pilot studies, peer reviewed articles	
Blackwater collection, digestion and energy recovery	ecoinvent database, peer reviewed articles, EPA Coeat Model	
Greywater collection, treatment and reuse	ecoinvent database, peer reviewed articles	
Rainwater harvest and use	ecoinvent database, peer reviewed articles	





Summary

26

- •Sustainable water services = resilient & adaptable systems
- •Based on resource recovery (so economically driven change)
- Need new metrics for public health / wellbeing assessment
- •Need 208 planning to provide for an adaptive compliance process

