Quantifying the biogenic silica content of primary producers in Waquoit Bay

March 22, 2017 in Algae, Current Research Projects, Salt marsh

Robinson W. “Wally” Fulweiler (lead PI) / Sarah Foster \ PhD student) / Mollie Yacano (undergraduate researcher)

Boston University, Earth and Environment Department

Funding Source(s):  Undergraduate Research Opportunities Program (UROP), Boston University

Bird Predation Exclusion

March 22, 2017 in Current Research Projects, Salt marsh

Jarret Byrnes, Farah Ahmad

UMASS Boston

Distribution and range expansion of blue crabs and their interactions with green crabs

March 22, 2017 in Climate change/Sea level rise, Current Research Projects, Salt marsh

Tanya Rogers, David Kimbro (Northeastern University Marine Science Center)

Funding Source(s):     Northeastern University; National Science Foundation

Investigating Salt Marshes as a source of Alkalinity and Low pH, High CO2 water to the Ocean

March 22, 2017 in Carbon/greenhouse gases, Climate change/Sea level rise, Current Research Projects, Salt marsh

Kevin Kroeger, Meagan Gonneea (U.S. Geological Survey: Woods Hole Coastal and Marine Science Center)

Aleck Wang (WHOI)

Funding Source(s):                 USGS, NSF

Exploring controls on the decomposition of salt marsh grass

March 22, 2017 in Climate change/Sea level rise, Current Research Projects, Salt marsh

Amanda Spivak

WHOI

Funding Source(s):     WHOI

Examining decapod community composition and species interactions in salt marshes across New England

March 22, 2017 in Climate change/Sea level rise, Current Research Projects, Invertebrates, Salt marsh

2016

Harriet Booth, Patrick Barrett, Meredith Burke, Dr. David Kimbro

Northeastern University

Funding Source(s):                 Northeastern University

Tea bag decomposition experiment

March 22, 2017 in Current Research Projects, Featured Projects, Microbes, Salt marsh

PIs: Dr. Faming Wang, Dr. Jianwu (Jim) Tang, Marine Biological Laboratory

teabagWe use commercially available tea bags as standardised test kits to gather data on salt marsh decomposition rates. This is a cost-effective, well-standardised method. By using two tea types with contrasting decomposability, we can construct a decomposition curve using a single measurement in time. We will compare the decomposition rate within the high marsh and low marsh, and also in the warmed chamber versus ambient reference. Our data was also included in a worldwide cooperation network to investigate the decomposition rate in different ecosystems using the tea bag method.

To read more about the tea bag experiment and its relationship to blue carbon research, please visit:

http://bluecarbonlab.org/ and also http://www.teatime4science.org/about/the-project/

Experimental mapping of coastal habitats using small airborne remote-sensing technology

July 29, 2013 in Current Research Projects, Salt marsh

PI: Hanu Singh, WHOI
David Fisichella, WHOI
Jim Rassman, WBNERR

WHOI scientists are working with Reserve staff, using a small hobby-plane equipped with GPS and camera to take high-resolution photos of the salt marsh and shore at South Cape Beach. These photos are useful for public presentations, but more importantly can map change over time, damage from storms, results of controlled burns, animal populations (such as seals), etc. TOTE 2012- jcm 005IMG_6933

Greenhouse Gas Sensing in Coastal and Salt Marsh Environments

July 3, 2013 in Carbon/greenhouse gases, Climate change/Sea level rise, Current Research Projects, Salt marsh

PI: Anna Michel, Princeton University (WHOI in Fall 2012)
Funding: WHOI and submitted grants (NSF, MIT Seagrant)

 

The Effects of Nitrogen-loading on Arthropod Diversity and Food-Web Dynamics in Salt Marshes

July 3, 2013 in Current Research Projects, Invertebrates, Nitrogen, Salt marsh

PIs: Gina Wimp, Georgetown University
Dan Lewis, Georgetown University
Shannon Murphy, Denver University
Funding: NSF

 

Salt Marsh Sediment Sources – the role of Barrier Beach Aeolian Sand Transport and Deposition

July 3, 2013 in Current Research Projects, Salt marsh, Sediments

PI: Camille David, UMASS-Dartmouth, PhD Candidate
Advisor: Brian Howes, UMASS-Dartmouth
Funding: UMASS-Dartmouth, WBNERR collaborative in-kind

 

Comparing Methods and the Stability of Deep-Driven Rod Elevation Benchmarks and SETs in a Salt Marsh Environment

July 3, 2013 in Climate change/Sea level rise, Current Research Projects, Featured Projects, Salt marsh, Sediments

IMG_2761PIs: Philippe Hensel, National Geodetic Survey
Galen Scott, National Geodetic Survey, University of RI
Jim Lynch, US Geological Survey
WBNERR Staff: Jim Rassman, Jordan Mora, Chris Weidman

Description: Sediment Elevation Tables (SETs) and benchmarks are used to measure change in marsh elevation with millimeter scale accuracy to determine sedimentation rates. This information, combined with accurate water level measures, can assess whether salt marshes are keeping up with sea level rise or risk being “drowned.” Traditionally SETs and benchmarks are installed by driving metal rods deep into the earth until they hit resistance. This can be difficult and costly as each 4’ length of rod is expensive. This project is investigating whether it is necessary to drive the rods that deep, or whether they are just as stable at, say, 20’ depth. Rods have been driven to different depths in the South Cape Beach salt marsh and are being “leveled” regularly – measured against a known point – to see if they have shifted. If not, this research could result in new standards for installation of this infrastructure which would save significant time and money. This is one of a growing number of projects in the new “Climate Change Observatory” in this marsh.

 

Late Holocene Marine Transgression and the Drowning of a Coastal Forest: Lessons from the Past

June 27, 2013 in Current Research Projects, Featured Projects, Geologic History, Salt marsh, Sediments, Uncategorized

Chris Maio

PI: Chris Maio, UMASS-Boston, PhD Candidate.

Advisor: Allan Gontz, UMASS-Boston

Funding: UMASS-Boston, Geological Society of America Research Award, collaborative in-kind-WBNERR

My research looks at coastal changes that have occurred in response to sea-level rise and storminess during the past 4000 years. I use a variety of methods including sediment core analysis, ground penetrating radar, GIS, and radiocarbon dating. Learning about how the Waquoit estuarine system responded to past sea level-rise and storminess will provide needed context for understanding and anticipating future changes.
An ancient red cedar forest was first revealed after a series of storms in 2010 resulted in significant erosion along South Cape Beach revealing 111 subfossil stumps along the beach and into the water. Thirteen stumps were radiocarbon dated and ranged in age from ~413-1200 years old. We assume this age represents the time at which the ancient trees were drowned by marine waters. Shoreline change analysis showed that between 1846 and 2008, the shoreline fronting the paleoforest retreated landward by 70 m at a long-term rate of 0.43 m/yr. paleo forest2
Sediment cores were analyzed to determine storm and sea level history. Radiocarbon dates of bivalve microfossils indicate that Waquoit Bay was first inundated by marine waters approximately 3600 years ago. The ongoing research will help decipher the relationship between sea-level rise, storminess, and the inundation of terrestrial ecosystems and will help to illuminate what caused the drowning of the South Cape Beach paleoforest.

“The Impact of Nitrogen-loading on Salt Marsh Greenhouse Gas Fluxes.”

May 29, 2013 in Carbon/greenhouse gases, Climate change/Sea level rise, Current Research Projects, Featured Projects, Nitrogen, Salt marsh

DSC_0125PIs:  Serena Moseman-Valtierra, University of Rhode Island, Jianwu Tang, MBL Ecosystems Center, Kevin Kroeger, USGS-Woods Hole Science Center,
Funding: MIT Seagrant
Description: The general goal for the project is to measure potential greenhouse gas (GHG) emissions and net CO2 uptake in coastal wetlands under a range of realistic nitrogen (N) loads and inundation (sea) levels. By meeting this goal, we aim to improve the information with which managers and policy makers can maintain and maximize ecosystem productivity, reduce harmful feedbacks of climate, and assess the potential for these ecosystems to enter C markets.

We will examine how GHG emissions from salt marshes vary along an existing gradient of anthropogenic N loading in Waquoit Bay, MA (WB-NERR). Further, we will test for relationships between N loads to the marshes and plant productivity. To investigate the influence of anticipated future increases in sea level, we will use existing gradients in marsh soil elevation (and therefore a gradient in soil water saturation and in frequency and duration of soil inundation) as a space-for-time substitution simulating future inundation of soils.

“Carbon Management in Coastal Wetlands: Quantifying Carbon Storage and Greenhouse Gas Emissions by Tidal Wetlands to Support Development of a Greenhouse Gas Protocol and Economic Assessment.”

May 29, 2013 in Carbon/greenhouse gases, Climate change/Sea level rise, Current Research Projects, Featured Projects, Nitrogen, Salt marsh

wetlandsProject Lead: Alison Leschen, Waquoit Bay Reserve Manager
Collaborative Lead: Tonna-Marie Rogers, Waquoit Bay Coastal Training Program Coordinator
PIs: Jianwu Tang, MBL Ecosystems Center, Kevin Kroeger, USGS-Woods Hole Science Center, Neil K. Ganju, USGS-Woods Hole Science Center, Serena Moseman-Valtierra, University of RI, Omar Abdul-Aziz, Florida International Univ., Stephen Emmett-Mattox, Restore America’s Estuaries, Igino Emmer, Silvestrum, Stephen Crooks, Consultant to RAE, Pat Megonigal, Smithsonian ERC, Thomas Walker, Manomet CCS, Chris Weidman, Waquoit Bay Reserve Research Coordinator,
Funding: NERRS Science Collaborative

Increasing atmospheric concentrations of three major greenhouse gases (GHG) are the main drivers of climate change. Efforts to ameliorate rising levels of GHG include the protection and restoration of ecosystems that constitute major carbon (C) sinks and minor sources of CH4 and N2O emissions. Tidal marshes are prime candidates for such efforts as their sediments display  high C sequestration. Loss of wetlands through human impacts such as land conversion, sediment supply disruption, nutrient loading, and with sea level rise, reduces future sequestration capacity and places at risk stores of C that built up over past centuries. Improved management of coastal C and nitrogen (N), based upon sound science, is a critical first step towards mitigation of climate change and management of coastal ecosystems. Management must address N loading that has the dual impact of 1) contributing to climate change through production of N2O, and 2) reducing production of root and soil matter by plants which can decrease the C sequestration capacity and resilience of marshes to sea level rise. Recognition of the importance of coastal marine systems in terms of C storage has led to national and international efforts to place monetary value on preserving or restoring the “blue carbon” in those systems, analogous to the value placed on forests. The barrier to incorporation of tidal wetlands into C markets is the absence of agreed upon GHG offset protocols that set guidelines for monitoring and verification requirements for wetlands projects, and a lack of data and knowledge regarding C and GHG fluxes in wetlands to support model development.

The project goals are to provide scientific information that can inform both C and N management as well as wetlands protection and restoration strategies for supporting development of policy frameworks and market-based mechanisms to reduce GHG.

Project website: http://wbnerrwetlandscarbon.net/